Search results for "Potent matrices"

showing 2 items of 2 documents

A note on k-generalized projections

2007

Abstract In this note, we investigate characterizations for k -generalized projections (i.e., A k  =  A ∗ ) on Hilbert spaces. The obtained results generalize those for generalized projections on Hilbert spaces in [Hong-Ke Du, Yuan Li, The spectral characterization of generalized projections, Linear Algebra Appl. 400 (2005) 313–318] and those for matrices in [J. Benitez, N. Thome, Characterizations and linear combinations of k -generalized projectors, Linear Algebra Appl. 410 (2005) 150–159].

Pure mathematicsNumerical AnalysisAlgebra and Number TheoryNormal matricesHilbert spaceCharacterization (mathematics)Matrius (Matemàtica)Normal matrixAlgebrasymbols.namesakeLinear algebrasymbolsDiscrete Mathematics and CombinatoricsSpectral projectionGeometry and TopologyÀlgebra linealLinear combinationProjectionst-Potent matricesMathematicsLinear Algebra and its Applications
researchProduct

Algorithms for {K, s+1}-potent matrix constructions

2013

In this paper, we deal with {K, s + 1}-potent matrices. These matrices generalize all the following classes of matrices: k-potent matrices, periodic matrices, idempotent matrices, involutory matrices, centrosymmetric matrices, mirrorsymmetric matrices, circulant matrices, among others. Several applications of these classes of matrices can be found in the literature. We develop algorithms in order to compute {K, s + 1}-potent matrices and {K, s + 1}-potent linear combinations of {K, s + 1}-potent matrices. In addition, some examples are presented in order to show the numerical performance of the method. (C) 2012 Elsevier B.V. All rights reserved.

Matemàtica aplicadaQuantitative Biology::BiomoleculesLinear combinationsQuantitative Biology::Populations and EvolutionEigenvaluesPotent matricesINGENIERIA TELEMATICAMATEMATICA APLICADAMatrius (Matemàtica)Involutory matricesQuantitative Biology::Cell Behavior
researchProduct